Metamaterial of rod pairs standing on gold plate and its negative refraction property in the far-infrared frequency regime.

نویسندگان

  • F M Wang
  • H Liu
  • T Li
  • Z G Dong
  • S N Zhu
  • X Zhang
چکیده

A new kind of metamaterial, an array of periodic gold rod pairs standing on gold substrate, is introduced in this paper. A commercial electromagnetic mode solver, the High-Frequency Structure Simulator, is employed to explore the propagation property of electromagnetic waves in this system. When an S -polarized electromagnetic (EM) wave propagates along the substrate surface, strong magnetic resonance is produced in the far-infrared regime. Based on the simulated S parameters, effective refraction index is retrieved and negative value is obtained over the wavelength range from 49.2 microm to 66.7 microm. A wedge made of this metamaterial with an inclined angle 26.6 degrees is designed. An observable negative refraction behavior of EM wave is attained in this structure at wavelength 61.2 microm. The refractive index is calculated by Snell's law and it is consistent with the retrieved results quite well. This provides direct evidence for the negative refraction property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refraction at the Interface of a Lossy Metamaterial

The refraction phenomenon at the interface of an ordinary material and a lossy metamaterial has been investigated. For oblique incidence on the lossy metamaterial, the planes of constant amplitude of the refracted wave are parallel to the interface and the plane of constant phases make a real angle with the interface (real refraction angle). The real refraction angle and hence, the real refract...

متن کامل

A Systematic Approach to Photonic Crystal Based Metamaterial Design

Photonic crystal design procedure for negative refraction has so far been based on trial and error. In this paper, for the first time, a novel and systematic design procedure based on physical and mathematical properties of photonic crystals is proposed to design crystal equi-frequency contours (EFCs) to produce negative refraction. The EFC design is performed by the help of rectangular stair-c...

متن کامل

A new planar left-handed metamaterial composed of metal-dielectric-metal structure.

An improved planar structure of left-handed (LH) metamaterial is presented, and then designed and analyzed in microwave regime. In the anticipated LH frequency regime, the LH property is validated from the phenomena of backward wave propagation and negative refraction. To characterize the electromagnetic property of the planar metamaterial, we introduce the wedge method by constructing a wedge-...

متن کامل

Investigation tow of negative refraction characters in the three different 2D phononic crystals

In this paper, a two-dimensional phononic crystal comprising of steel rod in water is investigated. Three cross- sections for this rod are considered using finite element method (EFM). We plot the equifrequency surface of the first band, because of equifrequency surface convex around the edge of the first Brillouin Zone, we guess the negative effective phononic mass and so negative refraction. ...

متن کامل

A New Circular Polarization Metamaterial Ferrite Phase Shifter

In this paper, a new X band Metamaterial (MTM) based ferrite phase shifter is presented. The phase shifter is excited by circular polarized wave base on combination of TE10 and TE01 modes in a square waveguide. In order to synthesize negative refractive index metamaterial (NIM), negative permeability of ferrite slabs in extraordinary mode is mixed with the negative permitivity of printed period...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 75 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2007